134 research outputs found

    Revising the age for the Baptistina asteroid family using WISE/NEOWISE data

    Get PDF
    We have used numerical routines to model the evolution of a simulated Baptistina family to constrain its age in light of new measurements of the diameters and albedos of family members from the Wide-field Infrared Survey Explorer. We also investigate the effect of varying the assumed physical and orbital parameters on the best-fitting age. We find that the physically allowed range of assumed values for the density and thermal conductivity induces a large uncertainty in the rate of evolution. When realistic uncertainties in the family members' physical parameters are taken into account we find the best-fitting age can fall anywhere in the range of 140-320 Myr. Without more information on the physical properties of the family members it is difficult to place a more firm constraint on Baptistina's age.Comment: 27 pages, 16 figures, accepted to Ap

    A revised asteroid polarization-albedo relationship using WISE/NEOWISE data

    Get PDF
    We present a reanalysis of the relationship between asteroid albedo and polarization properties using the albedos derived from the Wide-field Infrared Survey Explorer. We find that the function that best describes this relation is a three-dimensional linear fit in the space of log(albedo)-log(polarization slope)-log(minimum polarization). When projected to two dimensions the parameters of the fit are consistent with those found in previous work. We also define p* as the quantity of maximal polarization variation when compared with albedo and present the best fitting albedo-p* relation. Some asteroid taxonomic types stand out in this three-dimensional space, notably the E, B, and M Tholen types, while others cluster in clumps coincident with the S- and C-complex bodies. We note that both low albedo and small (D<30 km) asteroids are under-represented in the polarimetric sample, and we encourage future polarimetric surveys to focus on these bodies.Comment: 16 pages, Accepted to Ap

    The Albedo Distribution of Near Earth Asteroids

    Get PDF
    The cryogenic WISE mission in 2010 was extremely sensitive to asteroids and not biased against detecting dark objects. The albedos of 428 Near Earth Asteroids (NEAs) observed by WISE during its fully cryogenic mission can be fit quite well by a 3 parameter function that is the sum of two Rayleigh distributions. The Rayleigh distribution is zero for negative values, and follows f(x)=xexp[x2/(2σ2)]/σ2f(x) = x \exp[-x^2/(2\sigma^2)]/\sigma^2 for positive x. The peak value is at x=\sigma, so the position and width are tied together. The three parameters are the fraction of the objects in the dark population, the position of the dark peak, and the position of the brighter peak. We find that 25.3% of the NEAs observed by WISE are in a very dark population peaking at pV=0.03p_V = 0.03, while the other 74.7% of the NEAs seen by WISE are in a moderately dark population peaking at pV=0.168p_V = 0.168. A consequence of this bimodal distribution is that the Congressional mandate to find 90% of all NEAs larger than 140 m diameter cannot be satisfied by surveying to H=22 mag, since a 140 m diameter asteroid at the very dark peak has H=23.7 mag, and more than 10% of NEAs are darker than p_V = 0.03.Comment: 7 pages LaTex, 4 figures, accepted for publication in the Astronomical Journa

    The Euphrosyne family's contribution to the low albedo near-Earth asteroids

    Get PDF
    The Euphrosyne asteroid family is uniquely situated at high inclination in the outer Main Belt, bisected by the nu_6 secular resonance. This large, low albedo family may thus be an important contributor to specific subpopulations of the near-Earth objects. We present simulations of the orbital evolution of Euphrosyne family members from the time of breakup to the present day, focusing on those members that move into near-Earth orbits. We find that family members typically evolve into a specific region of orbital element-space, with semimajor axes near ~3 AU, high inclinations, very large eccentricities, and Tisserand parameters similar to Jupiter family comets. Filtering all known NEOs with our derived orbital element limits, we find that the population of candidate objects is significantly lower in albedo than the overall NEO population, although many of our candidates are also darker than the Euphrosyne family, and may have properties more similar to comet nuclei. Followup characterization of these candidates will enable us to compare them to known family properties, and confirm which ones originated with the breakup of (31) Euphrosyne.Comment: Accepted for publication in Ap

    Asteroid family identification using the Hierarchical Clustering Method and WISE/NEOWISE physical properties

    Full text link
    Using albedos from WISE/NEOWISE to separate distinct albedo groups within the Main Belt asteroids, we apply the Hierarchical Clustering Method to these subpopulations and identify dynamically associated clusters of asteroids. While this survey is limited to the ~35% of known Main Belt asteroids that were detected by NEOWISE, we present the families linked from these objects as higher confidence associations than can be obtained from dynamical linking alone. We find that over one-third of the observed population of the Main Belt is represented in the high-confidence cores of dynamical families. The albedo distribution of family members differs significantly from the albedo distribution of background objects in the same region of the Main Belt, however interpretation of this effect is complicated by the incomplete identification of lower-confidence family members. In total we link 38,298 asteroids into 76 distinct families. This work represents a critical step necessary to debias the albedo and size distributions of asteroids in the Main Belt and understand the formation and history of small bodies in our Solar system.Comment: Accepted to ApJ. Full version of Table 3 to be published electronically in Ap

    Uncertainties on Asteroid Albedos Determined by Thermal Modeling

    Get PDF
    We present an analysis of the accuracy of geometric albedos determined for asteroids through the modeling of observed thermal infrared radiation. We show that albedo uncertainty is dominated by the uncertainty on the measured HVH_V absolute magnitude, and that any analysis using albedos in a statistical application will also be dominated by this source of uncertainty. For all but the small fraction of asteroids with a large amount of characterization data, improved knowledge of the HVH_V magnitude will be fundamentally limited by incomplete phase curve coverage, incomplete light curve knowledge, and the necessary conversion from the observed band to the VV band. Switching the absolute magnitude standard to a different band such a rr' would mitigate the uncertainty due to band conversion for many surveys, but this only represents a small component of the total uncertainty. Therefore, techniques making use of these albedos must ensure that their uncertainties are being properly accounted for.Comment: 10 pages, 1 figure. Accepted to the Planetary Science Journa

    Main Belt Asteroids with WISE/NEOWISE: Near-Infrared Albedos

    Get PDF
    We present revised near-infrared albedo fits of 2835 Main Belt asteroids observed by WISE/NEOWISE over the course of its fully cryogenic survey in 2010. These fits are derived from reflected-light near-infrared images taken simultaneously with thermal emission measurements, allowing for more accurate measurements of the near-infrared albedos than is possible for visible albedo measurements. As our sample requires reflected light measurements, it undersamples small, low albedo asteroids, as well as those with blue spectral slopes across the wavelengths investigated. We find that the Main Belt separates into three distinct groups of 6%, 16%, and 40% reflectance at 3.4 um. Conversely, the 4.6 um albedo distribution spans the full range of possible values with no clear grouping. Asteroid families show a narrow distribution of 3.4 um albedos within each family that map to one of the three observed groupings, with the (221) Eos family being the sole family associated with the 16% reflectance 3.4 um albedo group. We show that near-infrared albedos derived from simultaneous thermal emission and reflected light measurements are an important indicator of asteroid taxonomy and can identify interesting targets for spectroscopic followup.Comment: Accepted for publication in ApJ; full version of Table1 to be published electronically in the journa
    corecore